APPLICATION OF BLOCK PAVEMENTS FOR PORTS 1 2

Yoshitaka HACHIYA
Chief
RUNWAYS LABORATORY
Yokosuka, Japan

Jianjun YIN
Guest Researcher
RUNWAYS LABORATORY
Yokosuka, Japan

Katsuhisa SATO
Professor, Department of Civil and Environmental Engineering
NAGAOKA COLLEGE OF TECHNOLOGY
Nagaoka, Japan

SUMMARY

Block pavements are classified as either interlocked or not. The blocks for interlocking block - ILB pavement are interlocked, while those for block pavements are placed independently without mutual load transfer. Block pavements use relatively large concrete blocks, and their application is regulated as a port pavement in Japan [1]. However, there are no regulations for ILB pavements or for tile pavements, in which the blocks are pasted to the surface of the concrete slabs.

The structural value of a block layer must be clarified for ILB pavements because the interlocked blocks behave as an elastic continuum. Furthermore, the performance of the stabilized base course that is generally used in ILB pavements and is subjected to heavy loads must be studied. Tile pavements can be considered as an overlay on a concrete pavement because the blocks are attached to the concrete slab. Therefore, their integrity must be evaluated.

Two kinds of research were conducted to verify the feasibility of using these block pavements for port areas. First, experimental pavements were constructed using block pavements, and several loading tests were conducted. Secondly, the performance of block pavements constructed in a port area was surveyed. Basic guidelines for structural design using block pavements in port areas were prepared based on the results.

1. EXPERIMENTAL PAVEMENT CONSTRUCTION

1.1 PAVEMENT STRUCTURE

The experimental pavements were planned as shown in Table 1. The design load for the pavement was set at BP1 (wheel load of 0.55 N/mm² and contact area of 100 000 mm²), so the standard concrete pavement structure was a 200 mm thick concrete slab placed on a base course with a coefficient of reaction, K30, of 200 MN/m² [1]. Section 1 corresponds to this standard structure. In Sections 2 through 4, the ILB pavement blocks were placed after constructing a sand bed on the concrete slab, while in Section 5 (the tile pavement), decorative tiles were pasted on a cement mortar spread on the concrete slab. The design coefficient for the foundation reaction, K30, was 200 MN/m² for all sections. The block size was 222 mm long, 110 mm wide and 80 mm thick, and the sand bed thickness was 20 mm for the ILB pavements, while the mortar thickness was 30 mm for the tile pavement.

The structural value for the block layer was assumed differently for the three ILB pavements. These pavements were planned primarily to clarify the applicability of the concrete pavement structural design method to ILB pavements. The structural capacities of the block layer relative to the concrete slab (i.e., equivalency factors) were assumed to be 1.0, 0.5, and 0 for Sections 2, 3, and 4, respectively. Namely, the assumed total thickness was 200 mm for each section; i.e., 80 mm (ILB) + 120 mm (concrete); 40 mm (ILB) + 160 mm (concrete); and 0 mm (ILB) + 200 mm (concrete). In addition, the sand bed was assumed to have no structural contribution.

In Section 5 where blocks were used as a decorative material, the equivalency factor for the block layer was reduced by half, as was the ILB pavement in Section 3.

1.2 CONSTRUCTION

Each section was 4 m wide and 2 m long, as shown in Figure 1. The subgrade thickness was 1 m.

The subgrade material was sand with a modified CBR of 33% that was compacted using vibrating rollers in five lifts. In situ CBR obtained on the subgrade was 26.6%, and the coefficient of reaction, K30, was 155 MN/m². The subbase was composed
of a crusher-run with a modified CBR of 118% that was constructed in several lifts, depending on the section. A K30 of 220 MN/m² was obtained on the subbase. Concrete was placed carefully to prevent segregation and then fully compacted. The concrete properties are shown in Table 2.

The sand used in Sections 2 to 4 was good quality coarse sand with little silt or clay components (5% or less passed through a 0.075 mm sieve). It was spread uniformly on the concrete slabs, and then the areas were compacted using plate compactors. The blocks were laid with the herringbone bond method, and then compacted with the plate compactor. The joints were filled with the same sand as that used in the sand bed.

When pasting the blocks onto the concrete slab in Section 5, the concrete slab was first thoroughly moistened, and then cement mortar with a low moisture content was spread uniformly over the concrete slab. Next, the cement paste containing chemical admixtures was applied, and the blocks were laid before the paste dried. The blocks were struck with a plastic hammer to make them adhere to the cement mortar tightly. The joints were filled with sand as with the ILB pavements.

2. EXPERIMENTAL PAVEMENT INVESTIGATION

2.1 LOADING TESTS

The loading apparatus had large vehicle wheels (dual tires, 50 kN wheel load) that were driven across the experimental pavements up to 10,000 times. The tire pressure was 0.69 N/mm². Measurement of the mechanical and physical properties was performed at 0; 1 000; 3 000; 5 000 and 10 000 loading cycles.

Static loading tests were conducted using the 50 kN wheel load, deflections were measured using the Benkelman Beam method, and concrete strains were measured with one wheel over the embedded strain gauge. After completing the repeated loading tests, a falling weight deflectometer - FWD was used to measure the deflections at and away from the wheel path.

The surface characteristics were examined on the surface deformation and fracture of the blocks. The bond strength between the block and concrete slab in Section 5 was measured after the repetitive loading test. Transverse evenness was measured with a 3 m profilometer along two lines.

2.2 BENKELMAN BEAM DEFLECTION

Figure 2 presents the deflections measured with the Benkelman Beam (50 kN load). All block pavements showed considerably larger deflections than the reference pavement, Section 1. The deflection increased with decreasing concrete slab thickness, and the deflection was the greatest in Section 2, which had the thinnest concrete slab. However, the deflection was greater even in Section 4, where the concrete slab thickness was identical to that of Section 1.

Figure 3 compares the measured and calculated deflections based on Westergaard's interior loading formula. The block layer, the mortar layer, and the sand bed are not considered in this calculation. The measured deflections exceeded the calculated ones for the ILB pavements, so these might not be considered acceptable for concrete pavement.

2.3 CONCRETE SLAB STRAIN

The concrete slab strains measured before repetitive loading are shown in Figure 4. The concrete strain in the tile pavement was smaller than those in the ILB pavements, revealing that the block pasting method provides benefits over the other pavements. The thickness of the concrete slab in the ILB pavements influences the strain; the concrete slab in Section 4 is the thickest and has the smallest strain, while Section 2 had the thinnest concrete slab and the largest strain.

Figure 5 compares the measured and calculated strains using Westergaard's interior loading formula without considering the blocks, mortar or sand bed above the concrete slabs, as well as the deflection calculation. The measured values were less than the calculated ones for all sections, suggesting that the block layer contributes to increasing the structural capacity. This is in contrast to the deflection shown in Figure 3, where the measured values are greater than the calculated ones.

2.4 SURFACE CHARACTERISTICS

Repeated loading caused rutting only on ILB pavements, as shown in Figure 6. Although rutting increased rapidly in all sections as soon as the loading started, the rate then slowed. The effect of concrete slab thickness is clearly revealed by the fact that rutting is least in Section 4.

In situ pull tests were performed on the tile pavement at the end of the repeated loading test. The bond strength along the wheel path (0.16 N/mm²) was less than that elsewhere (0.18 N/mm²). Therefore, the blocks become easier to peel with repetitive loading.

No block was broken by the repetitive loading.

2.5 FWD DEFLECTION

Figure 7 shows the influence of repetitive loading on the FWD maximum deflection. The deflections were measured at Sections 2 through 5 after 10,000 cycles of loading. In the ILB pavements, the deflection clearly decreased with increasing concrete slab thickness. The deflection at Section 5 was similar to that of Section 4, in which the concrete slab thickness is 40 mm thicker. In both cases, the deflection is greater along the wheel path than elsewhere, confirming the influence of repetitive loading.

In Figure 8, the maximum FWD deflections are com-
pared to the calculated ones using the previous procedure. The measured deflections in the ILB pavements are also greater than the calculated ones, confirming that the use of the blocks leads to an increase in the deflection, as indicated by the use of the Benkelman Beam method. Pasting the blocks on the concrete slab has no effect on increasing the structural capacity from the viewpoint of deflection.

3. FIELD INVESTIGATION

The performance of ILB pavements in a port was investigated in addition to the experimental pavement evaluations. This study focused on the applicability of the asphalt pavement design method for ILB pavements.

Two types of pavements were evaluated: ILB pavement and asphalt pavement. Both had identical subgrade conditions and base course and subbase structures. In brief, the base course was a 210 mm thick, lean concrete layer, and the subbase was a 300 mm thick, mechanically stabilized, crushed stone layer. In the ILB pavement, a 20 mm thick sand bed and 100 mm thick blocks were placed on the lean concrete layer, so the total thickness of the block and sand bed was equal to the total thickness of the surface and binder courses in the asphalt pavement.

A 143 kN wheel load was applied over these two pavements up to 22,000 times. After the repeated loading, FWD deflections were measured along and away from the wheel path in the interior and at joints in the lean concrete layer.

Figure 9 shows the maximum FWD deflection of ILB pavement for a 147 kN load. The deflections at the contraction joints are almost identical to those in the interior, but larger values were obtained at the expansion joints. This may be because only joint fillers are inserted at the expansion joints.

Figure 10 contrasts the deflections of the ILB and asphalt pavements (T: at wheel path, NT: at non-trafficked section). This figure shows that deflections at the ILB pavement were slightly larger than those at the asphalt pavement.

4. BLOCK PAVEMENT DESIGN FOR PORTS

A block pavement design method was developed based on the test results.

In ILB pavements, the deflection and concrete strain decrease with increasing concrete slab thickness. The deflections at the ILB pavement are greater than at a concrete pavement with the same concrete slab thickness. On the contrary, the concrete slab strain for the ILB pavement is smaller than that for the concrete slab. Therefore, it is not necessary to consider the ILB pavement as an overlay on the concrete pavement.

For this reason, it is basically appropriate to apply the asphalt pavement design method to ILB pavement. The field investigation indicated that the block layer might be treated as the equivalent of the surface and binder course of asphalt concrete. Rutting, however, increases due to the repetitive loading. In some cases, the maximum rut depth reached 6 mm after 5,000 cycles. Therefore, ILB pavement will not be appropriate for use in locations where the loading conditions are severe if repairs cannot be made frequently.

In the tile pavements, the repeated loading influences the bond strength between the block and concrete slab. Highly skilled workers carefully pasted the blocks by hand in the experimental pavement construction, but blocks might become separated in actual construction. Therefore, the concrete slab thickness of tile pavements must be determined based on the concrete pavement structure design method assuming that the blocks do not increase the structural capacity of the pavement.

5. SUMMARY AND CONCLUSION

The authors proposed a design method for port block pavements with small blocks for the surface layer. Main conclusions are summarized below.

1. Introduction of the blocks reduces the base course stress but not the deflection.
2. Rutting caused by repetitive loading is not sufficiently serious to require repair, and no blocks were damaged by repetitive loading.
3. The structural capacities of the ILB and asphalt concrete layers are identical as far as deflection is concerned.
4. In tile pavement, pasting the blocks to the concrete reduces the concrete slab stress, but the deflection increases after repetitive loading.
5. ILB pavement should be designed using the asphalt pavement design method and assuming that the structural capacity of the ILB layer is identical to that of the surface and binder courses of asphalt concrete. Stabilized, high strength material should be used in the base course.
6. In tile pavements, the concrete slab thickness should be determined using the concrete pavement structural design method assuming that blocks do not change the structural capacity.

6. REFERENCE

Table 1. Experimental Pavement.

<table>
<thead>
<tr>
<th>SECTION</th>
<th>SURFACE COURSE</th>
<th>INTERMEDIATE LAYER</th>
<th>BASE COURSE</th>
<th>SUBBASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAPA SUPERFICIAL</td>
<td>CAPA INTERMEDIA</td>
<td>BASE</td>
<td>SUBBASE</td>
</tr>
<tr>
<td>1</td>
<td>Concrete</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ILB</td>
<td>80</td>
<td>Sand</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Adoquines</td>
<td></td>
<td>Arena</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Mortar</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Properties of Concrete.

<table>
<thead>
<tr>
<th>FRESH CONCRETE</th>
<th>HARDENED CONCRETE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCRETO FRESCO</td>
<td>CONCRETO ENDURECIDO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slump (mm)</th>
<th>Air Content (%)</th>
<th>Flexural Strength (N/mm²)</th>
<th>Compressive Strength (N/mm²)</th>
<th>Young's Modules (kN/mm²)</th>
<th>Poisson's Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento</td>
<td>Contenido de aire</td>
<td>Resistencia a la flexión</td>
<td>Resistencia a la compresión</td>
<td>Módulo de Young</td>
<td>Relación de Poisson</td>
</tr>
<tr>
<td>73</td>
<td>4.35</td>
<td>5.4</td>
<td>41.0</td>
<td>27.3</td>
<td>0.157</td>
</tr>
</tbody>
</table>

Figure 1. Experimental Pavement Sections (mm).

Figura 1. Secciones de pavimento experimentales (mm).

Figure 2. Benkelman Beam Deflections.

Figura 2. Deflexiones medidas con la Viga Benkelman.
DEFLEXIÓN (mm) vs ESPESOR DE LOSA (mm)
Section / Sección - Calculated / Calculada.

Figure 3. Comparison of Measured and Calculated Deflections.
Figura 3. Comparación de las deflexiones medidas y calculadas.

DEFORMACIÓN (10^3) vs CARGA (kN)
Section / Sección.

Figure 4. Concrete Slab Strains.

DEFORMACIÓN (10^3) vs ESPESOR DE LA LOSA (mm)
Section / Sección - Calculated / Calculada.

Figure 5. Comparison of Measured and Calculated Concrete Strains.
Figura 5. Comparación entre las deformaciones medidas y calculadas para el concreto.

AHUELLAMIENTO (mm) vs No. REPETICIONES DE CARGA
Section / Sección.

Figure 6. Rut Depth.
Figura 6. Profundidad del ahueellamiento.

DEFLEXIÓN CON EL FWD (mm) vs SECCIÓN
 Trafficked / Con tráfico - Non-trafficked / Sin tráfico.

Figure 7. FWD Deflections.
Figura 7. Deflexiones medidas con el deflectómetro de impacto.

DEFLEXIÓN CON EL FWD (mm) vs ESPESOR DE LA LOSA (mm)
Section / Sección - Calculated / Calculada.

Figure 8. Comparison of Measured and Calculated FWD Deflections.
Figura 8. Comparación entre las deflexiones medidas con el deflectómetro de impacto y las calculadas.
DEFLECCIÓN CON EL FWD (mm)

Figure 9. Comparison of Deflections in Trafficked and Non-Trafficked ILB Pavements.

Figura 9. Comparación de las deflexiones de pavimentos de adoquines con y sin tráfico.

DEFLECCIÓN CON EL FWD (mm)

ILB / Adoquines - Asphalt / Asfalto - Interior / Interior - Joint / Junta.

Figure 10. Comparison of Deflections in ILB and Asphalt Pavements.

Figura 10. Comparación de las deflexiones de los pavimentos de adoquines y los de asfalto.

UTILIZACIÓN DE PAVIMENTOS DE ADOQUINES DE CONCRETO PARA PUERTOS

Yoshitaka HACHIYA

Jefe

LABORATORIO DE VÍAS

Yokosuka, Japón

Jianjun YIN

Investigador Invitado

LABORATORIO DE VÍAS

Yokosuka, Japón

Katsuhisa SATO

Profesor, Departamento de Ingeniería Civil y Ambiental

COLEGIO DE TECNOLOGÍA DE NAGAOKA

Nagaoka, Japón

RESUMEN

Los pavimentos de adoquines de concreto se clasifican, en el Japón, en pavimentos de piezas trabadas o de piezas no trabadas. Las primeras se entrelazan, mientras que las segundos se colocan independientemente, sin transmisión mutua de fuerza. Los pavimentos de adoquines de concreto no trabados utilizan unidades relativamente grandes y su utilización en puertos pavimentados, está reglamentada en Japón [1]. Sin embargo, no existen reglamentaciones para pavimentos de adoquines de concreto o de adoquines trabados, como tampoco para pavimentos encapados con adoquines de concreto, en los cuales los adoquines están pegados a la superficie de las losas de concreto.

Se debe aclarar que la capa de adoquines de concreto para los pavimentos de adoquines que traban unos con otros, puesto que éstos se comportan como un todo elástico. Además, se debe estudiar el comportamiento de la base estabilizada que se utiliza generalmente en los pavimentos de adoquines de concreto, la cual está sujeta a grandes cargas. Los pavimentos encapados con adoquines de concreto se pueden considerar como un revestimiento sobre un pavimento de concreto, ya que los adoquines están pegados a la losa de concreto.
concreto. Por lo tanto se deben evaluar en su totalidad.

Se realizaron dos clases de investigación para verificar la factibilidad de la utilización de estos pavimentos de adoquines de concreto en las áreas portuarias. Primero, se construyeron pavimentos experimentales utilizando adoquines de concreto y se realizaron varias pruebas de carga. En segundo lugar, se evaluó el comportamiento del pavimento construido con adoquines de concreto en un área portuaria. Basándose en los resultados, se prepararon directrices para el diseño estructural de áreas portuarias con pavimentos de adoquines de concreto.

1. CONSTRUCCIÓN EXPERIMENTAL DE PAVIMENTO

1.1 ESTRUCTURA DEL PAVIMENTO

Los pavimentos experimentales se planificaron como se muestra en la Tabla 1. La carga de diseño para el pavimento fue establecida como BP1 (carga de llanta de 0,55 N/mm² y un área de contacto de 100 000 mm²), así la estructura estándar del pavimento de concreto fue una losa de 200 mm de espesor colocada sobre una base con un coeficiente de reacción, K₈0, de 200 MN/m² [1]. La Sección 1 corresponde a esta estructura estándar. En las Secciones 2 hasta la 4, los adoquines ILB se colocaron sobre la capa de arena que a su vez se construyó sobre la losa de concreto, mientras que en la Sección 5 (el pavimento de "enchape") se pegaron adoquines decorativos con mortero de cemento, espaciar directamente sobre la losa de concreto. El coeficiente del diseño para la reacción de la subrasante K₈0 fue de 200 MN/m², para todas las secciones. El tamaño de los adoquines fue de 222 mm de largo, 110 mm de ancho y 80 mm de altura (espesor); la capa de arena fue de 20 mm para los pavimentos de adoquines, mientras que el espesor del mortero fue de 30 mm para el pavimento enchape.

El valor estructural de la capa de adoquines se supuso de manera diferente para los tres pavimentos de adoquines. Estos pavimentos fueron planeados, fundamentalmente, para clarificar la aplicabilidad del método del diseño estructural de los pavimentos en concreto, a los pavimentos de adoquines. Las capacidades estructurales de la capa de adoquines con relación a la losa de concreto (es decir, los factores de equivalencia) se supusieron como 1,0; 0,5; y 0 para las Secciones 2, 3 y 4, respectivamente. A saber, el espesor total asumido fue 200 mm para cada Sección; es decir, adoquín de 80 mm + 120 mm de concreto; adoquín de 40 mm + 160 mm de concreto; y adoquín de 0 mm + 200 mm de concreto. Además se supuso que la capa de arena no tenía una contribución estructural.

En la Sección 5, en donde los adoquines fueron utilizados como material decorativo, el factor de equivalencia para la capa de adoquines fue reducido a la mitad, lo mismo que lo fue el pavimento de adoquín en la Sección 3.

1.2 CONSTRUCCIÓN

Cada Sección tenía 4 m de ancho y dos de largo, como se muestra en la Figura 1. El espesor de la subrasante era de 1 m.

El material de la subrasante era arena con un CBR modificado del 33 %, compactada por medio de rodillos vibratorios, en cinco capas. El valor del CBR obtenido en el sitio fue del 26,6 %, y el coeficiente de reacción, K₈0, fue de 155 MN/m². La subbase era de roca triturada con un CBR modificado de 118 %, compactada en varias capas dependiendo del espesor. En la subbase se obtuvo un K₈0 de 220 MN/m². El concreto se colocó cuidadosamente para evitar la segregación y luego se compactó completamente. Las propiedades del concreto se muestran en la Tabla 2.

La arena utilizada en las Secciones 2 a 4, era gruesa, de buena calidad, con poco contenido de limo o arcilla (el 5 % o menos pasó a través del tamiz de 75 mm). La arena fue esparcida uniformemente sobre las losas de concreto y luego las áreas fueron compactadas con una placa vibrocompactora. Los adoquines fueron colocados en patrón de esquina de pascado y luego compactados con la placa vibrocompactora. Las juntas fueron llenadas con la misma arena utilizada en la capa de arena. Al pegar los bloques sobre la losa de concreto en la Sección 5, la losa se humedeció previamente por completo y luego se espacía uniformemente el mortero de cemento, de baja humedad, sobre la losa de concreto. Enseguida se aplicaba pasta de cemento que contenía aditivos químicos, cuidando que los adoquines se colocaran antes de que la pasta secase. Los adoquines se golpearon con un martillo plástico para que adhiriesen estrechamente a la pasta de cemento. Las juntas se llenaban con arena como se hace en los pavimentos de adoquines.

2. INVESTIGACIÓN CON EL PAVIMENTO EXPERIMENTAL

2.1 PRUEBAS DE CARGA

El aparato de aplicación de carga tenía llantas de vehículo pesado (llanta doble, con 50 kN de carga), las cuales se desplazaban sobre los pavimentos experimentales hasta 10 000 veces. La presión de los neumáticos era de 0,68 N/mm². Las mediciones de las propiedades mecánicas y físicas se hicieron eran realizadas a 0; 1 000; 3 000; 5 000; ciclos de carga. Las pruebas de carga estática se realizaban utilizando la carga de 50 kN de la llanta. Las deflexiones se midieron utilizando el método de la Viga Benkelman y las deformaciones del concreto se midieron al colocar una llanta directamente sobre el deformímetro embobido. Después de completar el ensayo de repetición de cargas, se utilizó un deflec-
tómetro de impacto - FWD para medir las deflexiones sobre y fuera de la huella de las llantas.

Se examinaron las características de la superfi cie en cuanto a deformación de ésta y la fractura de los adoquines. La fuerza de la unión entre los adoquines y la losa de concreto en la Sección 5, se midió después de las pruebas de repetición de cargas. La uniformidad transversal se midió con un perfilómetro de 3 m a través de dos líneas.

2.2 DEFLEXIÓN DE LA VIGA BENKELMAN

La Figura 2 representa las deflexiones medidas con la Viga Benkelman (carga de 50 kN). Todos los pavimentos de adoquín mostraron deflexiones considerablemente mayores que el pavimento de referencia, Sección 1. La deflexión aumentaba al decrecer el espesor de la losa de concreto, y la deflexión fue máxima en la Sección 2, la cual tenía la losa de concreto más delgada. Sin embargo, la deflexión fue mayor aún en la Sección 4, en donde el espesor de la losa de concreto era idéntico a la de la Sección 1.

La Figura 3 compara la deflexión calculada y medida basada en la fórmula de carga interior de Westergaard. La capa de adoquines, la capa de mortero y la capa de arena, se no tienen en cuenta en este cálculo. Las deflexiones medidas excedieron las calculadas para los pavimentos de adoquines de concreto, así que estas no pueden ser consideradas aceptables para pavimento en concreto.

2.3 DEFLEXIÓN DE LA LOSA DE CONCRETO

Las deformaciones de las losas de concreto, medidas antes de la repetición de cargas, se muestran en la Figura 4. La deformación del concreto en el pavimento enchapado fue menor que en los pavimentos de adoquines de concreto, mostrando que el método de pegar los adoquines proporciona beneficios mayores que otros pavimentos. El espesor de la losa de concreto en los pavimentos de adoquines de concreto infl uencia la deformación; la losa de concreto en la Sección 4, es la más gruesa y tiene la menor deformación, mientras que la Sección 2 tiene la losa de concreto más delgada y la mayor deformación.

La Figura 5 compara las deformaciones medidas y calculadas utilizando la fórmula de carga interior de Westergaard, sin considerar los adoquines, el mortero o la capa de arena sobre las losas de concreto, como también el cálculo de la deformación. Los valores medidos fueron menores que los calculados para todas las secciones, sugiriendo que la capa de adoquines de concreto contribuye a aumentar la capacidad de la estructura. Esto en contraste con la deflexión mostrada en la Figura 3, en donde los valores medidos son mayores que los calculados.

2.4 CARACTERÍSTICAS DE LA SUPERFICIE

La repetición de cargas causó ahueamiento solamente en los pavimentos de adoquines de concreto como se muestra en la Figura 6. Aunque el ahueamiento aumentó rápidamente en todas las direcciones tan pronto como comenzó la prueba, el porcentaje disminuyó después. El efecto del espesor de la losa de concreto es claramente mostrado por el hecho de que el ahueamiento es mínimo en la Sección 4.

Se realizaron pruebas de tracción en el pavimento enchapado, directamente en el lugar, al final de la prueba de fuerza repetida. La fuerza de unión a lo largo de la huella de la llanta (0,12 N/mm²) fue menor que en cualquiera otra parte (0,18 N/mm²). Por esto, los adoquines resultan más fáciles de despegar después de la repetición de las cargas.

Ningún adoquín se rompió por la repetición de cargas.

2.5 DEFLEXIONES MEDIDAS CON EL DEFLECTÓMETRO DE IMPACTO

La Figura 7 muestra la influencia de la repetición de cargas sobre la deflexión máxima del FWD. Las deflexiones fueron medidas en las Secciones 2 a 5, después de 10 000 ciclos de carga. En los pavimentos de adoquines de concreto, la deflexión decreció claramente con el aumento de espesor de la losa de concreto. La deflexión en la Sección 5 fue semejante a la de la Sección 4, en la cual el espesor de la losa de concreto es 40 mm mayor. En ambos casos la deflexión es mayor a lo largo de la huella de la llanta que en cualquier otra parte, confi rmando así la influencia de la carga repetida.

En la Figura 8 las deflexiones máximas, medidas con el FWD se comparan con las calculadas al usar el procedimiento previo. Las deflexiones medidas en los pavimentos de adoquines de concreto también son mayores que las calculadas, confi rmando que el uso de los adoquines de concreto conduce a un aumento de la deflexión como está indicado por el uso del método de la Viga de Benkelman. Pegar los adoquines sobre la losa de concreto no tiene efecto sobre el aumento de la capacidad estructural desde el punto de vista de la deflexión.

3. INVESTIGACIÓN DE CAMPO

Se investigó la resistencia de los pavimentos de adoquines de concreto en un puerto además de las evaluaciones del pavimento experimental. Este estudio se focalizó sobre la aplicabilidad del método de diseño de pavimentos de asfalto para pavimentos de adoquines de concreto.

Se evaluaron dos tipos de pavimento: Pavimentos de adoquines de concreto y pavimentos de concreto asfálticos. Ambos tenían idénticas condiciones de subrasante y estructuras de subbase y base. En síntesis, la base tenía 210 mm de espesor de concreto pobre, y la subbase tenía un espesor de 300 mm de piedra triturada, estabilizada mecánicamente. En el pavimento de adoquines de concreto
se había colocado sobre la capa de concreto pobre
una capa de arena de 20 mm de espesor y adoqui-
nes de concreto de 100 mm de espesor, de tal ma-
nera que el espesor total de la capa de arena y del
adoquin era igual al espesor de la superficie y los
riegas de unión del pavimento de asfalto.

Sobre estos dos pavimentos se aplicó una carga ro-
dante de 143 kN hasta alcanzar 22.000 pasadas.
Después de la repetición de carga, se midieron las
deflexiones con el FWD a lo largo y fuera de la hue-
lla de las llantas, en el interior y en las juntas en la
capa de concreto pobre.

La Figura 9 muestra la deformación máxima medida
con el FWD en el pavimento de adoquines de con-
creto para una carga de 147 kN. Las deflexiones en
las juntas de contracción son casi idénticas a las del
interior, pero se obtuvieron valores mayores en las
juntas de expansión. Esto puede deberse a que so-
lamente se colocaron sellantes o llenos en las
juntas de expansión.

La Figura 10 contrasta las deflexiones de los pavi-
mentos de adoquin y los de asfalto (T. con tráfico, NT: sin tráfico). Esta Figura muestra que las defle-
xiones en el pavimento de adoquines eran levemente
mayores que en el pavimento de asfalto.

4. DISEÑO DE PAVIMENTOS DE
ADOQUINES DE CONCRETO PARA
PUERTOS

Se desarrolló un método de diseño de pavimentos de
adoquines de concreto basado en los resultados de
la prueba.

En los pavimentos de adoquines de concreto, la de-
flexión y la deformación del concreto disminuye al
aumentar el espesor de la loza de concreto. Las
deflexiones en el pavimento de adoquines de con-
creto son mayores que en un pavimento de concreto
del mismo espesor. Por el contrario, la deformación
de la loza de concreto para el pavimento de adqui-
nes de concreto es menor que la de la loza de con-
creto. Por lo tanto, no es necesario considerar el
pavimento de adoquines de concreto como una sob-
recapa de pavimentos de concreto.

Por esta razón, es básicamente apropiado aplicar el
método de diseño de pavimentos de asfalto a los
pavimentos de adoquines de concreto. La investi-
gación de campo indicó que la capa de adoquines
de concreto puede ser tratada como el equivalente
de la superficie y los riegos de liga de los pavimen-
tos de concreto asfáltico. Sin embargo, el ahuealamien-
to aumenta debido a la carga repetida. En algunos
casos, la profundidad máxima de ahuealamiento al-
canzó los 5 mm después de 5.000 ciclos. Por esta
razón, el pavimento de adoquines de concreto no
será apropiado para el uso en lugares en donde las
condiciones de carga son severas, si no se pueden
hacer las reparaciones con frecuencia. En los pa-
vimentos enchapados, la carga repetida influye so-
bre la fortaleza de la unión entre los adoquines y la
losa de concreto. Obreros altamente calificados pe-
garon a mano cuidadosamente los adoquines en la
construcción del pavimento experimental, pero en la
construcción real podrían llegar a separarse. Por
esto el espesor de la losa de concreto de los pavi-
mientos enchapados, debe determinarse con base
en el método de diseño de estructura del pavimento
de concreto, suponiendo que los adoquines de con-
creto no aumentan la capacidad estructural del pa-
vimento.

5. RESUMEN Y CONCLUSIÓN

Los autores propusieron un método de diseño de
pavimentos de adoquines de concreto para puertos
con adoquines pequeños para la capa superficial.
Las principales conclusiones se resumen abajo:

1. La introducción de adoquines reduce el esfuer-
zo en la base pero no la deflexión.
2. El ahuealamiento causado por la repetición de
carga no es lo suficientemente serio como para
que requiera reparación, y los adoquines no
fueron dañados por dicha carga.
3. La capacidad estructural de las capas de ado-
quines de concreto y de asfalto son idénticas
en cuanto a la deflexión.
4. En el pavimento enchapado, el pegar los ado-
quines al concreto reduce el esfuerzo en la losa,
pero la deflexión aumenta después de car-
gas repetidas.
5. Los pavimentos de adoquines de concreto de-
berían ser diseñados utilizando el método de
diseño de pavimento de asfalto y suponiendo,
que la capacidad estructural de la capa de ado-
quines es idéntica a la de la superficie y
las capas de ligantes de concreto asfáltico. En
la base se debería utilizar material de alta resis-
tencia, estabilizado.
6. En los pavimentos enchapados, el espesor de
la losa de concreto debe determinarse utilizan-
do el método de diseño estructural de pavimen-
tos de concreto, suponiendo que los adoquines
de concreto no cambian la capacidad estructu-
ral.